
Outlier Detection in Neuro-Fuzzy Modeling

Jyh-Shing Roger Jang
CS Department, Tsing Hua University, Hsinchu, Taiwan

Email: jang@cs.nthu.edu.tw

Keywords: Fuzzy modeling, neuro-fuzzy modeling,
outlier detection, linear/nonlinear regression, leave-one-out
error, least-squares estimator.

Abstract

This paper describes an efficient method to compute the

leave-one-out (LOU) error of a model that is linear in the

parameters. The LOU error can be used for detecting out-

liers in a given data set. An example of detecting outliers

in polynomial fitting is used to show the method’s concept.

The proposed method is used in neuro-fuzzy modeling for

a public-domain data set and it successfully identifies an

outlier that could be introduced during manuscript editing

when the data set was published.

1. Introduction

One of the most accurate methods to estimate the per-
formance of a pattern classifier is the leave-one-out tech-

nique, also called the jackknife procedure [1]. In the pro-
cedure, one sample from a data set containing m samples
is saved for testing and a classifier is designed using the re-
maining m → 1 samples. The sample that was withheld is
then tested. The procedure is repeated for each sample; the
average error rate of the design method is k/m, where k is
the number of errors. The estimate of error rate is unbiased

because no samples were used for both training and testing
a given classifier. Moreover, the estimate of error rate will
be as accurate as possible since all m samples were used
for testing. In fact, the technique nearly doubles the effec-
tive size of the data set when compared with the common
practice of dividing the data set into disjoint training and
test sets.

For regression problems, a leave-one-out (LOU) error

can be defined similarly. An efficient matrix manipulation

*Presented in International Joint Conference on Information Science,
Research Triangle, 1998.

†Research supported by National Science Council NSC88-2213-E-
007-007 (Error Estimate and Structure Determination in Soft Computing),
Taiwan

technique for computing the LOU error of a linear model
is proposed in our previous work [4], and the LOU error is
used as an unbiased performance index for input selection.
In this paper, we shall revisit the computation of the LOU
error and propose a way of using the error for outlier de-
tection for models that are linear in the parameters. Such
models include simple linear regression models and com-
plex neuro-fuzzy models. We shall demonstrate the con-
cept using an example of outlier detection in polynomial
fitting. An advanced example of outlier detection in neuro-
fuzzy modeling will also be described, where the proposed
method is embedded in a neuro-fuzzy modeling approach
(ANFIS [3, 6]) for a public-domain data set. The method
can successfully identified an outlier which could be intro-
duced during the manuscript editing when the data set was
published [7].

2. An Incremental Method for Computing

Leave-one-out Errors

This section briefly reviews the efficient matrix manipu-
lation technique [4] for computing the leave-one-out (LOU)
least-squares estimator of a linear model. Based on the tech-
nique, we then derive a method to derive the LOU error
directly, without knowing the LOU least-squares estimator
in advance. The proposed method is applied to outlier de-
tection in polynomial fitting and neural-fuzzy modeling, as
described in the next section.

The least-squares problem can be formulated as the so-
lution to a set of linear equations:

Aω = y,

where A is a m ↑ n matrix; y is a m ↑ 1 vector; and ω is
an n ↑ 1 vector of unknown linear parameters. In general,
the number of training data m is greater than the number of
parameters n, so there is no exact solution ω to the above
equation. Instead, we seek to find the least-squares esti-

mator (LSE) ω = ω̂ that can minimize E(ω):

ω̂ = argmin
ω

E(ω) = argmin
ω

(y →Aω)T (y →Aω).

The solution to the above minimization problem can be
solved by a number of methods [6], including direct dif-
ferentiation, completing the square, and intuitive geometric
interpretation. The resulted formula is

ω̂ = (ATA)→1ATy. (1)

For on-line computation, the above formula can be trans-
formed into an equivalent iterative form, called the recur-

sive least-squares estimator [2]:




k+1 = k → kk+1

T
k+1k

1 +T
k+1 kk+1

,

ωk+1 = ωk +k+1 k+1(yk+1 →T
k+1 ωk),

(2)

where k ranges from 0 to m→1 and the overall least-squares
estimator ω̂ is equal to ωm, the estimator using all m data
pairs.

By applying the same concept of the recursive least-
squares estimator, Jang [4] has proposed an efficient way
of computing the leave-one-out (LOU) least-squares esti-
mator. The least-squares estimator without using the pth
data pair is computed as

ω̂p̄ = (AT
p̄ Ap̄)

→1AT
p̄ yp̄, (3)

where Ap̄ is obtained from A after deleting its pth row T
p ,

and yp̄ is obtained from y after deleting its pth element yp.
The efficient formula proposed by Jang [4] can be expressed
as

ω̂p̄ = ω̂ →p̄ (y →T ω̂), (4)

p̄ = +
T

1→T , (5)

where is the inverse of ATA, and [T ; y] is the deleted pth
input-output data pair. (The subscript p for [T ; y] is left
out for simplicity.) The computational complexity of the
above formula is analyzed in detail in ref. [4]. The obtained
LOU LSE ω̂p̄ can be used to check the effects of deleting
pth sample data pair.

For easy reference, we shall define two type of RMSE
(root mean square error) associated with the pth sample
data. The LOU test RMSE for pth sample data is

LOU-RMSEtest = |yp →T
p ω̂p̄|. (6)

The LOU training RMSE for pth sample data is

LOU-RMSEtraining =

√√√√ 1

m→ 1

m∑

i=1,i ↑=p

(yi →T
i ω̂p̄)2.

(7)
In practice, we do not need to know ω̂p̄ in order to compute
the LOU test RMSE defined in Equation (6). This is derived
as follows.

First, let us define two types of errors associated with the
pth sample data pair T and y:

ep = y →T ω̂, (8)

ep̄ = y →T ω̂p̄, (9)

where ep is the resubstitution error using the overall LSE
ω̂, and ep̄ is the test error using the LOU LSE ω̂p̄. After
plugging Equation (4) into Equation (9), we have

ep̄ = y →T ω̂
= y →T [ω̂ →T

p̄ (y →T ω̂)]

= y →T ω̂ +T
p̄

T (y →T ω̂)

= (1 +T
p̄

T)(y →T ω̂)
= (1 +T

p̄
T)ep

(10)

We pre- and post-multiply Equation (5) by T
p̄ and p̄, yielding

a scalar equation:

T
p̄ = T +

T T

1→T

=
T

1→T ,

or equivalently,

1+T
p̄ =

1

1→T . (11)

By plugging the above equation into Equation (10), we have
the following relationship between ep and ep̄:

ep̄ = (1 +T
p̄

T)ep
=

ep
1→T T . (12)

In other words, the steps to find ep̄ for p = 1 to n can be
summarized as follows:

1. Find the matrix as the inverse of ATA.

2. Find the overall least-squares estimator ω̂ =
(ATA)→1ATy = ATy.

3. Compute the resubstitution error ep associated with the
pth data pair, for p = 1 to m, according to Equation (8).

4. Compute the LOU error ep̄ associated with the pth data
pair, for p = 1 to m, according to Equation (12).

If we count multiplication/division or addi-
tion/subtraction as a single FLOP (floating point operation),
then steps 1 and 2 requires m(6n2 + 5n → 1) ↓ 6mn2

FLOPs [4]. Similarly, step 3 requires 2mn FLOPs and
step 4 requires m(4n2 → n + 1) ↓ 4mn2. There-
fore the total number of FLOPs required to com-
pute the LOU errors ep̄, for p = 1 to m, is equal to
10mn2 + 4mn = m(10n2 + 4n) ↓ 10mn2. This
computational complexity compares favorably with

6m2n2 [4], which is the complexity of the naive approach
that computes ω̂p̄ from scratch every time the pth data is
removed.

Since ep̄ represents the fitting error of a model designed
via all sample data except the pth one, the magnitude of
ep̄ indicates the difference between the pth data and all the
other sample data in terms of the identified model. In other
words, the bigger the magnitude of ep̄ is, the more likely the
pth sample data is an outlier.

Note that one may choose to use the magnitude of ep
as a criterion for detecting outliers. However, according to
Equation (12), the ranking of ep does not necessarily have
the same order as that of ep̄. Therefore detecting outliers
according to ep̄ is a more justified approach.

3. Computational Complexity

The computation complexity of Equation (2) for a given
k is listed in the following two tables. (For simplicity, the
subscript indices of k is deleted.)

Counts Counts
Steps Operations for mul. for add.

or div. or sub.
1 n2 n(n→ 1)

2
T

= [][]T
n2 0

3 T [] n n→ 1
4 1 + [T] 0 n2

5 [T]
[1+T]

n2 0

6 →
[T

1+T

]
0 n2

1-6 FLOPs from 1 to 6 3n2 + n 3n2 → 1
1-6 Total FLOPs 6n2 + n→ 1

Counts Counts
Steps Operations for mul. for add.

or div. or sub.
1 Tω n n→ 1
2 y → [Tω] 0 1
3 [][y →T ω] 0 n
4 ω + [(y →T ω)] 0 n

1-4 FLOPs from 1 to 4 n 3n
1-4 Total FLOPs 4n

In the above two tables, each square-bracketed quan-
tity (in the ”Operations” column) is readily available from
the previous steps. If we count both multiplication/division
and addition/subtraction as a single FLOP (floating point
operation), then the computation of Equation (2) requires
(6n2 + n→ 1) + (4n) = 6n2 + 5n→ 1 FLOPs and it takes
m(6n2 + 5n→ 1) ↓ 6mn2 FLOPs to find the least-squares

estimator ω. Note that the formulas to compute ωp̄ from ω
(see Equation (4) and (5)) are almost the same as the formu-
las in Equation (2), hence the complexity for computingωp̄

can be derived accordingly as explained in the following.
Now we have two methods to compute the leave-one-out

RMSE. For a simple-minded approach, we need to compute
the least-squares estimator ωp̄ for p = 1 to m. If it is done
via the recursive formulas in Equation (2), the whole pro-
cess requires about (m→1)[6(m→1)n2] ↓ 6m2n2 FLOPs.
In other words, it takes m times as long to compute all ωp̄,
p = 1 to m. This could be inhibitively long since m is the
number of training data pairs and its value, though depends
on applications, is usually more than 100.

To reduce the computation load, we can employ the in-
cremental method proposed earlier. First we need to find the
overall and ω when all data set is used. This requires about
6mn2 FLOPs if Equation (2) is used. Then we need to re-
move the effect of each data pair one at a time; this requires
another 6mn2 FLOPs. So the total number of FLOPs is
about 12mn2, which is much smaller than that (6m2n2) of
the simple-minded approach. Therefore via the proposed
approach, it only takes twice as long to compute all ωp̄,
p = 1 to m, as to compute ω.

If we are more interested in obtaining the LOU test er-
ror, we can simply apply Equation (12) to save more com-
putation. The computational complexity of Equation (12) is
given next.

Counts Counts
Steps Operations for mul. for add.

or div. or sub.
1 n2 n(n→ 1)
2 T [] n2 n(n→ 1)
3 1→ [T] 0 n

4 ep
[1→T]

1 0

1-4 FLOPs from 1 to 4 2n2 + 1 2n2 → n
1-4 Total FLOPs 4n2 → n+ 1

4. Experimental Results

4.1. Example 1: Outlier Detection in Poly-

nomial Fitting

In this example, we use the proposed method to effi-
ciently compute LOU test RMSE for polynomial fitting, and
demonstrate that the obtained ep̄ can be used as an indicator
for finding possible outliers. The sample data is obtained

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−10

−5

0

5

10

X

Y

(a)

LOU training RMSE

LOU test RMSE

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

X

E
rr

o
r

(b)

Figure 1. Outlier detection in polynomial fitting:

(a) Noisy sample data (circles). (b) LOU training

RMSE (circles) and LOU test RMSE (crosses) with

respect to x.

from a fourth order polynomial:

y =
0.3256x4 + 3.0088x3 → 2.5463x2 → 7.4908x+ 3.7636︸ ︷︷ ︸

signal

+ n︸︷︷︸
noise

,
(13)

where n is a Gaussian distributed random variable with zero
mean and unity variance. We picked 21 x values (that are
evenly distributed from →2 to 2) as the input part of the
sample data; the corresponding output part was obtained by
evaluating Equation (13) at the 21 x values. These 21 sam-
ple data are all we have, and our mission is to identify the
optimal order for the fitting polynomial, and then the likeli-
hood of each data point being an outlier.

The optimal order of the fitting polynomial occurs when
the LOU test RMSE is minimal, as described in ref [4].
Thus the optimal order is found to be 4. Then we can exam-
ine each ep̄, for p = 1 to 21, to find the data point with maxi-
mal ep̄. The result is shown in Figure 1 (b), where the maxi-
mum occurs when p = 9 or x = →0.4. We conclude that the
data point at x = →0.4 is more likely to be an outlier than
all the other points. Visual inspection on Figure 1 (a) also
conforms to our conclusion. However, visual inspection be-
comes harder when we are dealing with high-dimensional
data. Hence we have to rely on the proposed computational
routine to identify outliers for high-dimensional data.

4.2. Example 2: Outlier Detection in

Neuro-Fuzzy Modeling

In this example, we apply the proposed method to com-
pute the LOU errors of ANFIS [3, 6] for a data set from
a nonlinear function [7]. The data set is generated from a
nonlinear function:

y = (1 + x→2
1 + x→1.5

2)2, 1 ↔ x1, x2 ↔ 5. (14)

A surface plot of the above function is shown in Figure 2 (a).
50 data points were collected according to the above equa-
tion, as printed in Table II of ref. [7]. The scatter plot of
these 50 data points, together with their indices, are shown
in Figure 2 (b). The data set is also available from the
“working group on data modeling benchmarks”, at

http://neural.cs.nthu.edu.tw/jang/benchmark/

(Note that the original data set contains 4 inputs, two of
which are dummy inputs that can be easily removed by us-
ing input selection techniques in refs. [7] or [4]. The fol-
lowing discussion assumes that the correct inputs have been
selected already.)

We shall use the ANFIS approach to model the data set.
In general, ANFIS is a nonlinear model that consists of
both premise and consequent parameters. However, if the
premise parameters are fixed, then ANFIS becomes a linear-
in-the-parameters model and the proposed method to find ep̄
can be applied directly.

For simplicity, we adopt the grid partitioning [5] of the
input space, and each input is assigned three generalized
bell membership functions. The computed ep̄ for p = 1 to
50 is shown in Figure 3. Apparently the most significant
peak corresponds to the 42nd data point. When further ex-
amined this data point, we found that it is indeed an outlier
since the input-output pair does not satisfy Equation (14) at
all. If we assume the input vector is correct, then the out-
put should be 3.11 instead of 1.97, as listed in Table II of
ref. [7]. Therefore we conclude that the proposed method
successfully found an outlier, which is likely to be intro-
duced during manuscript editing of ref. [7].

The other two significant peaks corresponds to the 11th
and 38th data point. These two data points are not outlin-
ers since they all satisfy Equation (14). Their unusual large
LOU test errors are due to the fact that they are located at
the boundary of the whole data set. This can be seen from
Figure 2 (b), where the 11th data point is located left-most
while the 38th data point is located lowest in vertical direc-
tion. These boundary points are likely to induce high LOU
errors and thus should be taken into consideration when try-
ing to detect outliers.

1

2

3

4

5 1

2

3

4

5
2

3

4

5

6

7

8

9

x

y

z

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

(a) (b)

Figure 2. Data set from a nonlinear function: (a)

surface plot of the nonlinear function; (b) scatter plot

of the data set.

LOU test RMSE

LOU training RMSE

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Data index

R
M

S
E

Figure 3. LOU training and test RMSEs .

5. Concluding Remarks

We have proposed an incremental method to efficiently
compute the LOU (leave-one-out) error of a linear model.
We have analyzed the computational complexity of the pro-
posed method, and applied it to identify outliers in poly-
nomial fitting and neuro-fuzzy modeling. In particular, the
method did found an outlier in a public-domain data set of
a nonlinear function.

Sample data in high-dimensional space tend to be sparse,
which inevitably aggravates the boundary effect that assigns
large LOU test errors to boundary data points, as demon-
strated in the example of neuro-fuzzy modeling. How to
take boundary effects into consideration when detecting
outliers using LOU error is currently under study.

References

[1] E. Gose, R. Johnsonbaugh, and S. Jost. Pattern Recognition

and Image Analysis. Prentice Hall, Upper Saddle River, NJ,
1996.

[2] T. C. Hsia. System identification: least-squares methods. D.
C. Heath and Company, 1977.

[3] J.-S. R. Jang. ANFIS: Adaptive-Network-based Fuzzy Infer-
ence Systems. IEEE Transactions on Systems, Man, and Cy-

bernetics, 23(03):665–685, May 1993.
[4] J.-S. R. Jang. Leave-one-out regularity criterion for input se-

lection in fuzzy modeling. In Proceedings of IEEE Interna-

tional Conference on Fuzzy Systems, Alaska, May 1998.
[5] J.-S. R. Jang and C.-T. Sun. Neuro-fuzzy modeling and con-

trol. The Proceedings of the IEEE, 83(3):378–406, Mar. 1995.
[6] J.-S. R. Jang, C.-T. Sun, and E. Mizutani. Neuro-Fuzzy and

Soft Computing: A Computational Approach to Learning and

Machine Intelligence. MATLAB Curriculum Series. Prentice
Hall, Upper Saddle River, NJ, 1997.

[7] M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach
to qualitative modeling. IEEE Transactions on Fuzzy Systems,
1(1):7–31, Feb. 1993.

